Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study
نویسندگان
چکیده
This work presents some energy considerations concerning a biorefinery case study that has been carried out by the CRB/CIRIAF of the University of Perugia. The biorefinery is the case study of the BIT3G project, a national funded research project, and it uses the lignocellulosic biomass that is available in the territory as input materials for biochemical purposes, such as cardoon and carthamus. The whole plant is composed of several sections: the cardoon and carthamus seed milling, the oil refinement facilities, and the production section of some high quality biochemicals, i.e., bio-oils and fatty acids. The main goal of the research is to demonstrate energy autonomy of the latter section of the biorefinery, while only recovering energy from the residues resulting from the collection of the biomass. To this aim, this work presents the quantification of the energy requirements to be supplied to the considered biorefinery section, the mass flow, and the energy and chemical characterization of the biomass. Afterwards, some sustainability strategies have been qualitatively investigated in order to identify the best one to be used in this case study; the combined heat and power (CHP) technology. Two scenarios have been defined and presented: the first with 6 MWt thermal input and 1.2 MWe electrical power as an output and the second with 9 MWt thermal input and 1.8 MWe electrical power as an output. The first scenario showed that 11,000 tons of residual biomass could ensure the annual production of about 34,000 MWht, equal to about the 72% of the requirements, and about 9600 MWhe, equal to approximately 60% of the electricity demand. The second scenario showed that 18,000 tons of the residual biomass could ensure the total annual production of about 56,000 MWht, corresponding to more than 100% of the requirements, and about 14,400 MWhe, equal to approximately 90% of the electricity demand. In addition, the CO2 emissions from the energy valorization section have been quantified and the possibility of re-using the CO2 flow in order to produce methane is described.
منابع مشابه
Selected Process Alternatives for Biomass Refining: A Review
The role of biorefineries in the production of energy and chemicals from biomass of lignocellulosic nature is reviewed. Special attention is devoted to biorefinery schemes dealing with the fractionation of lignocellulosic raw materials by chemical treatments. The potential of hydrothermal treatments as the first stage of future biorefineries is discussed. Special attention is devoted to the low...
متن کاملConversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process
Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent ...
متن کاملA Bayesian Network Based Approach for Risk Modeling to Aid in Development of Sustainable Biomass Supply Chains
If lignocellulosic biomass is to become a viable competitor with fossil based resources for the production of energy and chemical products, sustainable sources of this material must be established. To address this issue an understanding about the risks affecting biomass sources and the biorefineries which they supply is crucial. In this paper, a quantitative approach using Bayesian Belief Netwo...
متن کاملFormation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.
The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at ...
متن کاملSpecial issue: Application of biotechnology for biofuels: transforming biomass to biofuels
Rising energy prices and depleting reserves of fossil fuels continue to renew interest in the conversion of biomass to biofuels production. Biofuels derived from renewable feedstocks are environmentally friendly fuels and have the potential to meet more than a quarter of world demand for transportation fuels by 2050. Moreover, biofuels are expected to reduce reliance on imported petroleum, redu...
متن کامل